China Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump vacuum pump booster

Item Description

Water Ring Variety Vacuum Pumps (2BE3)
Liquid Ring Vacuum Pump

Greentech Global (Xihu (West Lake) Dis.) Co., Ltd is the skilled vacuum pump supplier.
The application assortment and characteristics:
2BE3 sequence h2o ring vacuum pumps and compressors are created and created by our business integrating with the advanced technology overseas. They are not only can preserve energy, but also can work continuously for a lengthy time.
Below the rough vacuum scenario, the needs for the liquid ring vacuum pumps are quite demanding. So the 2BE3 collection products are made for pumping different gases. They are commonly utilised in a lot of industries, these kinds of as, the paper, mine, power station, chemical and so on.

2BE3 collection goods can be pushed with numerous distinct sets, this sort of as, the V-belt, synchronal motor, gear box and many others. In buy to conserve place, much more than 2 or at most 4 sets of the 2BE3 collection pumps can be pushed by 1 motor at the same time.
When established a middle wall in the casing, the strain tolerance between the 2 sides is reduced than 80kPa and the 2 components can perform in distinct vacuum standing respectively. Therefore 1 pump can perform well like two. Hereby the product running versatility is enhanced properly.
The principal qualities of 2BE3 series products:

· The tolerance, corrosive position, and the begrime predicament can be effortlessly observed by the huge inspection port on both sides of the stop-defend.
· The 2BE3 series pumps have flanges each on the top and sides with the identical diameter. It is more convenient to join with the 2BE3 series pumps.
· The bearings are all used of the imported products in buy to hold the precise orientation and the high stability throughout the doing work of the pump.

· The content of the impeller is QT400 nodular iron or metal plates for ensuring the balance of the pump underneath the various rigorous scenarios and extending the existence of the pump efficiently.
· The casing is produced of steel or stainless steel plates to prolong the lifetime of the 2BE3 collection pumps.
· The shaft bushing is manufactured of stainless steel plates to increase the life of the pumps 5 instances more than the typical substance.

· The V-belt pulley (when the pump is pushed by the belt) is used of the large exact pulley with taper bushing to hold the reliability of the pump and increase its life. And it is also simple to mantle and dismantle.
· The special layout of placing the separator over the pump will save the place and decreases the sound effectively.
· All the spare areas are solid by the resin sands that make the area of the pump really sleek. So it is not required to protect the area of the pump with putty and gives out the warmth proficiently.
· The mechanical seals (optional) are all used the imported goods so as to avoid the leakage for the duration of the working of the pump for a lengthy time.

 

Type Speed
(Travel type)
r/min
Max shaft electricity
kW
Motor Energy
kW
Suction Capability Limited vacuum
(stomach muscles)
mbar
Weight of bare pump with separator
kg
m 3 /h m 3 /min
2BE3 four hundred 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/equipment box)
530(V-Belt/gear box)
570(V-Belt/equipment box)
610(V-Belt/gear box)
82
ninety five
a hundred and fifteen
134
148
167
189
110
a hundred and ten
132
one hundred sixty
185
two hundred
220
4850
5650
6250
6900
7470
8000
8600
80.eight
94.two
104.2
115.
124.five
133.3
143.three
160 3275
2BE3 420 340(V-Belt/equipment box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/equipment box)
530(V-Belt/equipment box)
570(V-Belt/gear box)
610(V-Belt/gear box)
108
132
157
one hundred eighty
204
229
260
132
a hundred and sixty
185
200
220
250
315
6650
7650
8550
9400
10150
10700
11600
110.8
127.five
142.five
156.six
169.2
178.3
193.three
a hundred and sixty 3720
2BE3 five hundred 260(equipment box)
three hundred(gear box)
340(gear box)
380(equipment box)
420(equipment box)
470(gear box)
142
171
203
238
277
338
160
two hundred
250
280
315
four hundred
8700
10150
11400
12700
13800
15500
145.
169.2
one hundred ninety.
211.seven
230.
258.3
160 6110
2BE3 520 260(gear box)
300(equipment box)
340(equipment box)
380(gear box)
420(gear box)
470(gear box)
172
210
245
288
337
412
two hundred
250
280
315
400
500
10700
12300
14000
15400
16800
18700
178.3
205.
233.3
256.7
280.
311.seven
one hundred sixty 6740
2BE3 600 230(gear box)
260(equipment box)
290(equipment box)
320(gear box)
350(gear box)
four hundred(equipment box)
205
243
285
322
365
465
250
280
315
355
450
560
12700
14400
16000
17500
19000
21600
211.7
240.
266.seven
291.seven
316.seven
360.
160 9100
2BE3 620 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(equipment box)
400(gear box)
250
300
340
390
450
570
280
355
four hundred
450
five hundred
630
15600
17700
19500
21300
23200
26200
260.
295.
325.
355.
386.seven
436.seven
one hundred sixty 10700
2BE3 670 210(equipment box)
240(gear box)
270(gear box)
three hundred(equipment box)
320(equipment box)
330(gear box)
370(equipment box)
280
350
415
465
523
545
670
315
400
450
560
630
630
800
18300
20400
23160
25500
27000
27720
30960
305
340
386
425
450
462
516
160 12700
2BE3 720 a hundred ninety(gear box)
210(equipment box)
240(equipment box)
270(equipment box)
three hundred(equipment box)
340(equipment box)
345
395
475
550
642
795
400
450
560
630
710
900
21900
24300
27480
30540
33780
38100
365
405
458
509
563
635
160 15700

US $10,000
/ Piece
|
1 Piece

(Min. Order)

###

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Wet

###

Customization:

###

Type Speed
(Drive type)
r/min
Max shaft power
kW
Motor Power
kW
Suction Capacity Limited vacuum
(abs)
mbar
Weight of bare pump with separator
kg
m 3 /h m 3 /min
2BE3 400 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/gear box)
530(V-Belt/gear box)
570(V-Belt/gear box)
610(V-Belt/gear box)
82
95
115
134
148
167
189
110
110
132
160
185
200
220
4850
5650
6250
6900
7470
8000
8600
80.8
94.2
104.2
115.0
124.5
133.3
143.3
160 3275
2BE3 420 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/gear box)
530(V-Belt/gear box)
570(V-Belt/gear box)
610(V-Belt/gear box)
108
132
157
180
204
229
260
132
160
185
200
220
250
315
6650
7650
8550
9400
10150
10700
11600
110.8
127.5
142.5
156.6
169.2
178.3
193.3
160 3720
2BE3 500 260(gear box)
300(gear box)
340(gear box)
380(gear box)
420(gear box)
470(gear box)
142
171
203
238
277
338
160
200
250
280
315
400
8700
10150
11400
12700
13800
15500
145.0
169.2
190.0
211.7
230.0
258.3
160 6110
2BE3 520 260(gear box)
300(gear box)
340(gear box)
380(gear box)
420(gear box)
470(gear box)
172
210
245
288
337
412
200
250
280
315
400
500
10700
12300
14000
15400
16800
18700
178.3
205.0
233.3
256.7
280.0
311.7
160 6740
2BE3 600 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(gear box)
400(gear box)
205
243
285
322
365
465
250
280
315
355
450
560
12700
14400
16000
17500
19000
21600
211.7
240.0
266.7
291.7
316.7
360.0
160 9100
2BE3 620 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(gear box)
400(gear box)
250
300
340
390
450
570
280
355
400
450
500
630
15600
17700
19500
21300
23200
26200
260.0
295.0
325.0
355.0
386.7
436.7
160 10700
2BE3 670 210(gear box)
240(gear box)
270(gear box)
300(gear box)
320(gear box)
330(gear box)
370(gear box)
280
350
415
465
523
545
670
315
400
450
560
630
630
800
18300
20400
23160
25500
27000
27720
30960
305
340
386
425
450
462
516
160 12700
2BE3 720 190(gear box)
210(gear box)
240(gear box)
270(gear box)
300(gear box)
340(gear box)
345
395
475
550
642
795
400
450
560
630
710
900
21900
24300
27480
30540
33780
38100
365
405
458
509
563
635
160 15700
US $10,000
/ Piece
|
1 Piece

(Min. Order)

###

Oil or Not: Oil Free
Structure: Rotary Vacuum Pump
Exhauster Method: Kinetic Vacuum Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Wet

###

Customization:

###

Type Speed
(Drive type)
r/min
Max shaft power
kW
Motor Power
kW
Suction Capacity Limited vacuum
(abs)
mbar
Weight of bare pump with separator
kg
m 3 /h m 3 /min
2BE3 400 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/gear box)
530(V-Belt/gear box)
570(V-Belt/gear box)
610(V-Belt/gear box)
82
95
115
134
148
167
189
110
110
132
160
185
200
220
4850
5650
6250
6900
7470
8000
8600
80.8
94.2
104.2
115.0
124.5
133.3
143.3
160 3275
2BE3 420 340(V-Belt/gear box)
390(V-Belt/gear box)
440(V-Belt/gear box)
490(V-Belt/gear box)
530(V-Belt/gear box)
570(V-Belt/gear box)
610(V-Belt/gear box)
108
132
157
180
204
229
260
132
160
185
200
220
250
315
6650
7650
8550
9400
10150
10700
11600
110.8
127.5
142.5
156.6
169.2
178.3
193.3
160 3720
2BE3 500 260(gear box)
300(gear box)
340(gear box)
380(gear box)
420(gear box)
470(gear box)
142
171
203
238
277
338
160
200
250
280
315
400
8700
10150
11400
12700
13800
15500
145.0
169.2
190.0
211.7
230.0
258.3
160 6110
2BE3 520 260(gear box)
300(gear box)
340(gear box)
380(gear box)
420(gear box)
470(gear box)
172
210
245
288
337
412
200
250
280
315
400
500
10700
12300
14000
15400
16800
18700
178.3
205.0
233.3
256.7
280.0
311.7
160 6740
2BE3 600 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(gear box)
400(gear box)
205
243
285
322
365
465
250
280
315
355
450
560
12700
14400
16000
17500
19000
21600
211.7
240.0
266.7
291.7
316.7
360.0
160 9100
2BE3 620 230(gear box)
260(gear box)
290(gear box)
320(gear box)
350(gear box)
400(gear box)
250
300
340
390
450
570
280
355
400
450
500
630
15600
17700
19500
21300
23200
26200
260.0
295.0
325.0
355.0
386.7
436.7
160 10700
2BE3 670 210(gear box)
240(gear box)
270(gear box)
300(gear box)
320(gear box)
330(gear box)
370(gear box)
280
350
415
465
523
545
670
315
400
450
560
630
630
800
18300
20400
23160
25500
27000
27720
30960
305
340
386
425
450
462
516
160 12700
2BE3 720 190(gear box)
210(gear box)
240(gear box)
270(gear box)
300(gear box)
340(gear box)
345
395
475
550
642
795
400
450
560
630
710
900
21900
24300
27480
30540
33780
38100
365
405
458
509
563
635
160 15700

What Are Vacuum Pumps?

Vacuum pumps use air flow as the source of energy. The system is ideal for dewatering wet media, creating filter cakes, and pneumatically moving materials through a pipe. A vacuum pump works through air flow that is moved by differential pressure. The pump’s air flow develops a vacuum in a chamber that is called the vacuum box. As the air flow collects gas at a faster rate than atmospheric pressure, it is considered the “heart” of a vacuum system.
Vacuum Pump

Principles of operation

Vacuum pumps work by reducing the volume of air that moves through them. Depending on the design, there are several different types of vacuum pumps. All of these types operate under the same principles, but have their own special features. Here are some of their most important characteristics. In addition to their capacity, the main differences between these pumps are their manufacturing tolerances, materials of construction, and level of tolerance for chemicals, oil vapor, and vibration.
Vacuum pumps create a partial or low-pressure vacuum by forcing gas molecules from their high-pressure states to their low-pressure states. However, these pumps can only achieve a partial vacuum, and other methods are necessary to reach a higher level of vacuum. As with all pumps, there are several ways to increase the level of a vacuum.
First, consider the type of vacuum you want. This is the most important factor when choosing a vacuum pump. If you need a high level of vacuum, you’ll need a high-quality vacuum pump. High-quality vacuum pumps have a high pressure limit, while ultrahigh-quality pumps are capable of achieving a very low vacuum. As the pressure decreases, the amount of molecules per cubic centimeter decreases and the quality of the vacuum increases.
Positive displacement pumps are best suited for low and medium-pressure systems. But they can’t reach high vacuum, which is why most high-pressure systems use two pumps in tandem. In this case, the positive displacement pump would stall and the other one would be used instead. Similarly, entrapment pumps have higher-pressure limits, so they must be refreshed frequently or exhaust frequently when there is too much gas to capture.
Another important aspect of vacuum pump operation is its speed. The speed of pumping is proportional to the differential pressure across the system. Therefore, the faster the pumping speed, the lower the draining time.

Design

A vacuum pump is a mechanical device used to generate a vacuum. It can create a low or high vacuum. These pumps are used in the process of oil regeneration and re-refining. The design of a vacuum pump must be compatible with the vacuum. The pump’s mass and speed should be matched.
The design of a vacuum pump is important for many reasons. It should be easy to use and maintain. Vacuum pumps need to be protected from external contamination. For this reason, the oil must be kept clean at all times. Contamination may damage the oil, resulting in pump failure. The pump’s design should include features that will prevent this from happening.
The main objective of a vacuum pump is to remove air and other gases from a chamber. As the pressure of the chamber drops, the amount of molecules that can be removed becomes more difficult. Because of this, industrial and research vacuum systems typically require pumps to operate over a large pressure range. The range is generally between one and 10-6 Torr. A standard vacuum system uses multiple pumps, each covering a portion of the pressure range. These pumps can also be operated in a series to achieve optimal performance.
The design of a vacuum pump can vary depending on the application and the pressure requirement. It should be sized appropriately to ensure that it works properly. There are several different types of pumps, so selecting the right pump is essential to maximizing its efficiency. For example, a slow running vee belt drive rotary vane vacuum pump will have a lower running temperature than a fast-running direct-drive pump.
Vacuum Pump

Performance

The performance of a vacuum pump is an important indicator of its overall condition. It helps determine whether the system is performing optimally and how high the ultimate vacuum level can be achieved. A performance log should be maintained to document variations in pump operating hours and voltage as well as the temperature of the pump’s cooling water and oil. The log should also record any problems with the pump.
There are several ways to increase the performance of a vacuum pump. For example, one way is to decrease the temperature of the working fluid. If the temperature of the fluid is too high, it will lead to a low vacuum. A high temperature will make the vacuum degree of the pump even lower, so heat transfer is an important part of the process.
Nozzles are another major component that impacts the performance of a vacuum pump. Damage or clogging can result in a compromised pumping capacity. These problems can occur due to a number of causes, including excessive noise, leakage, and misassembled parts. Nozzles can also become clogged due to rusting, corrosion, or excess water.
Performance of vacuum pump technology is vital for many industries. It is an integral part of many central production processes. However, it comes with certain expenses, including machines, installations, energy, and maintenance. This makes it essential to understand what to look for when purchasing a vacuum pump. It is important to understand the factors that can influence these factors, as they affect the efficiency of a vacuum pump.
Another important factor in determining the performance of a vacuum pump is throughput. Throughput is a measurement of how many molecules can be pumped per unit of time at a constant temperature. Moreover, throughput can also be used to evaluate volume leak rates and pressure at the vacuum side. In this way, the efficiency of a vacuum pump can be judged by the speed and throughput of its leaks.

Atmospheric pressure

Vacuum pumps work by sucking liquids or air into a container. The amount of vacuum a pump can create is measured in pressure units called atms (atmospheric pressure). The pressure of a vacuum pump is equal to the difference between atmospheric pressure and the pressure in the system.
The amount of force produced by air molecules on each other is proportional to the number of impacts. Therefore, the greater the impact, the higher the pressure. In addition, all molecules have the same amount of energy at any temperature. This holds true for both pure and mixture gases. However, lighter molecules will move faster than heavier ones. Nevertheless, the transfer of energy is the same for both.
The difference between atmospheric and gauge pressure is not always straightforward. Some applications use one term to describe the other. While the two concepts are closely related, there are key differences. In most cases, atmospheric pressure is a higher number than gauge pressure. As a result, it can be confusing when choosing a vacuum pump.
One method is to use a U-tube manometer, a compact device that measures the difference between atmospheric pressure and vacuum. This device is commonly used for monitoring vacuum systems. It can measure both negative and positive pressure. In addition, it uses an electronic version of a gauge.
The atmospheric pressure affects the performance of a vacuum pump. When working with porous materials, the pump must overcome leakage. As a result, it must be equipped with enough capacity to compensate for variations in the porosity of the work piece. This is why it is critical to buy a vacuum pump that has a large enough capacity to handle the variation.
Vacuum Pump

Typical application

Vacuum pumps are used in a variety of applications. They generate low and high pressures and are used to evaporate water or gases from various materials. They are also used in petroleum regeneration and re-refining processes. Typical applications of vacuum pumps include: a.
b. Rotary vane pumps are used in a variety of vacuum applications. They are suitable for industrial applications, freeze drying and cabinet making. They use oil as a sealant and coolant, allowing them to perform well in a variety of applications. This makes them ideal for use in a variety of industries.
The pumping rate of the vacuum pump is important. This refers to the volume pumped from a given point at a given rate. The higher the speed, the faster the pump will expel the air. Depending on the gas composition, this number will vary. When choosing a vacuum pump, gas composition and process requirements should be considered.
Vacuum pumps are used in a variety of industries from laboratories to medical facilities. In medical applications, they are used in radiation therapy and radiopharmaceuticals. They are also used in mass spectrometers, which are instruments used to analyze solid, liquid, or surface materials. Vacuum pumps are also used in decorative vacuum coatings and Formula 1 engine components. A trash compactor is another example of using a vacuum pump.
Vacuum pumps are used in a variety of applications including water purification and aeration. Vacuum pumps are also used in portable dental equipment and compressors in the dental industry. Vacuum pumps are also used in molds for dental implants. Other common applications for vacuum pumps include soil aeration and air sampling.

China Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump     vacuum pump booster	China Liquid Ring Type Vacuum Pumps (2BE3) / Water Ring Vacuum Pump     vacuum pump booster
editor by czh 2023-03-24